
!

i

This is a sample chapter of “WebRTC: APIs and RTCWEB Protocols of
the HTML5 Real-Time Web” by Alan B. Johnston and Daniel C. Burnett,

Second Edition.
For more information or to buy the paperback or eBook editions, visit

http://webrtcbook.com

!

3

1 INTRODUCTION TO WEB REAL-TIME
COMMUNICATIONS

Web Real-Time Communications (RTC), or WebRTC, adds new
functionality to the web browser. For the first time, browsers will interact
directly with other browsers, resulting in a number of architectures
including a triangle and trapezoid model. The media capabilities of
WebRTC are state-of-the-art, with many new features. The underlying
standards of WebRTC are being developed by the World Wide Web
Consortium (W3C) and the Internet Engineering Task Force (IETF).

1.1 WebRTC Introduction

WebRTC is an industry and standards effort to put real-time
communications capabilities into all browsers and make these capabilities
accessible to web developers via standard [HTML5] tags and JavaScript
APIs (Application Programming Interfaces). For example, consider
functionality similar to that offered by Skype™ [SKYPE] but without
having to install any software or plug-ins. For a website or web application
to work regardless of which browser is used, standards are required. Also,
standards are required so that browsers can communicate with non-
browsers, including enterprise and service provider telephony and
communications equipment.

1.1.1 The Web Browsing Model

The basic model of web applications is shown in Figure 1.1. Transport of
information between the browser and the web server is provided by the
Hyper-Text Transport Protocol, HTTP (Section 6.2.1), which runs over
Transmission Control Protocol, TCP (Section 6.2.9), or in some new

WebRTC: APIs and RTCWEB Protocols of the Real-Time Web

4

implementations, over the WebSocket protocol (see Section 6.2.2). The
content or application is carried in Hyper-Text Markup Language, HTML,
which typically includes JavaScript and Cascading Style Sheets [CSS]. In
the simple case, the browser sends an HTTP request to the web server for
content, and the web server sends a response containing the document or
image or other information requested. In the more complex case, the
server sends JavaScript which runs on the browser, interacting with the
browser through APIs and with the user through clicks and selects. The
browser exchanges information with the server through an open HTTP or
WebSockets channel.

Figure 1.1 Web Browser Model

In figures in this book, we will show an arrow between the web browser

and the web server to indicate the web session between them. Since
WebRTC can utilize any web transport, the details of this connection, and
whether it is HTTP or WebSockets is not discussed.

1.1.2 The Real-Time Communication Function in the Browser

Figure 1.2 shows the browser model and the role of the real-time
communication function. The lighter block called “Browser RTC
Function” is the focus of this book. The unique nature and requirements
of real-time communications means that adding and standardizing this
block is non-trivial. The RTC function interacts with the web application
using standard APIs. It communicates with the Operating System using the
browser. A new aspect of WebRTC is the interaction that occurs browser-
to-browser, known as a “Peer Connection”, where the RTC Function in
one browser communicates using on-the-wire standard protocols (not
HTTP) with the RTC Function in another browser or Voice over IP (VoIP)
or video application. While web traffic uses TCP for transport, the on-the-
wire protocol between browsers can use other transport protocols such as

5

User Datagram Protocol, UDP. Also new is the Signaling Server, which
provides the signaling channel between the browser and the other end of
the Peer Connection.

Figure 1.2 Real-Time Communication in the Browser

1.1.3 Elements of a WebRTC System

Figure 1.3 shows a typical set of elements in a WebRTC system. This
includes web servers, browsers running various operating systems on
various devices including desktop PCs, tablets, and mobile phones, and
other servers. Additional elements include gateways to the Public Switched
Telephone Network (PSTN) and other Internet communication endpoints
such as Session Initiation Protocol (SIP) phones and clients or Jingle
clients. WebRTC enables communication among all these devices. The
figures in this book will use these icons and elements as examples.

Figure 1.3 Elements in a WebRTC Environment

WebRTC: APIs and RTCWEB Protocols of the Real-Time Web

6

1.1.4 The WebRTC Triangle

Initially, the most common scenario is likely to be where both browsers are
running the same WebRTC web application, downloaded from the same
webpage. This produces the WebRTC “Triangle” shown in Figure 1.4.
This arrangement is called a triangle due to the shape of the signaling (sides
of triangle) and media or data flows (base of triangle) between the three
elements. A Peer Connection establishes the transport for voice and video
media and data channel flows directly between the browsers.

Figure 1.4 The WebRTC Triangle

Note that while we sometimes refer to the connection between the

browser and server as signaling, it is not really signaling as used in telephony
systems. Signaling is not standardized in WebRTC as it is just considered
part of the application. This signaling may run over HTTP or WebSockets
to the same web server that serves HTML pages to the browser, or to a
completely different web server that just handles the signaling.

1.1.5 The WebRTC Trapezoid

Figure 1.5 shows the WebRTC Trapezoid [draft-ietf-rtcweb-overview],
based on the SIP Trapezoid [RFC3261]. The two web servers are shown
communicating using a standard signaling protocol such as Session
Initiation Protocol (SIP), used by many VoIP and video conferencing
systems, or Jingle [XEP-0166], used to add voice and video capability to
Jabber [RFC6120] instant messaging and presence systems. Alternatively, a
proprietary signaling protocol could be used. Note that in these more
complicated cases, the media may not flow directly between the two
browsers, but may go through media relays and other elements, as discussed
in Chapter 3.

7

Figure 1.5 The WebRTC Trapezoid

1.1.6 WebRTC and the Session Initiation Protocol (SIP)

Figure 1.6 shows WebRTC interoperating with SIP. The Web Server has a
built-in SIP signaling gateway to allow the call setup information to be
exchanged between the browser and the SIP client. The resulting media
flow is directly between the browser and the SIP client, as the Peer
Connection establishes a standard Real-time Transport Protocol (RTP)
media session (Section 6.2.3) with the SIP User Agent. Other ways of
interoperating with SIP are covered in Section 2.2.6.

Figure 1.6 WebRTC Interoperating with SIP

1.1.7 WebRTC and Jingle

Figure 1.7 shows how WebRTC can interoperate with Jingle. The Web
Server has a built-in Extensible Messaging and Presence Protocol, XMPP
[RFC6120], also known as Jabber, server which talks through another
XMPP server to a Jingle client.

WebRTC: APIs and RTCWEB Protocols of the Real-Time Web

8

Figure 1.7 WebRTC Interoperating with Jingle

1.1.8 WebRTC and the Public Switched Telephone Network (PSTN)

Figure 1.8 shows how WebRTC can interoperate with the Public Switched
Telephone Network (PSTN). The PSTN Gateway terminates the audio-
only media stream and connects the PSTN telephone call with the media.
Some sort of signaling is needed between the Web Server and the PSTN
Gateway. It could be SIP, or a master/slave control protocol.

Figure 1.8 WebRTC Interoperating with the PSTN

It is not expected that browsers will be assigned telephone numbers or

be part of the PSTN. Instead, an Internet Communication service could
assign a telephone number to a user, and that user could use WebRTC to
access the service. As a result, a telephone call to that PSTN number would
“ring” the browser and an answered call would result in an audio session
across the Internet connected to the PSTN caller. Other services could
include the ability to “dial” a telephone number in a WebRTC application
which would result in the audio path across the Internet to the PSTN.

Note that the phone in Figure 1.8 could be a normal PSTN phone
(“landline” or “black phone”) or a mobile phone. The fact that it might be

9

running VoLTE (Voice over Long Term Evolution) or other VoIP (Voice
over Internet Protocol) protocol doesn’t change this picture, as the Peer
Connection will terminate with a VoIP gateway.

Another interesting area is the role of WebRTC in providing emergency
services. While a WebRTC service could support emergency calling in the
same way as VoIP Internet Communication services, there is the potential
that the Public Service Answering Point (PSAP) could become a WebRTC
application, and answer emergency “calls” directly from other browsers,
completely bypassing the PSTN. Of course, this raises all kinds of
interesting security, privacy, and jurisdiction issues.

1.2 Multiple Media Streams in WebRTC

Devices today can generate and consume multiple media types and multiple
streams of each type. Even in the simple point-to-point example shown in
Figure 1.9, a mobile phone and a desktop PC could generate a total of six
media streams. For multiparty sessions, this number will be much higher.
As a result, WebRTC has built-in capabilities for dealing with multiple
media streams and sources.

Figure 1.9 Multiple Media Streams in a Point-to-Point WebRTC Session

1.3 Multi-Party Sessions in WebRTC

The preceding examples have been point-to-point sessions between two
browsers, or between a browser and another endpoint. WebRTC also
supports multi-party or conferencing sessions involving multiple browsers.

One way to do this is to have each browser establish a Peer Connection
with the other browsers in the session. This is shown in Figure 1.10. This is
sometimes referred to as a “full mesh” or “fully distributed” conferencing
architecture. Each browser establishes a full mesh of Peer Connections
with the other browsers. For audio media, this might mean mixing the
media received from each browser. For video, this might mean rendering
the video streams from other browsers to different windows with
appropriate labeling. As new browsers join the session, new Peer
Connections are established to send and receive the new media streams.

WebRTC: APIs and RTCWEB Protocols of the Real-Time Web

10

Figure 1.10 Multiple Peer Connections Between Browsers

An alternative architecture to the full-mesh model of Figure 1.10 is also

possible with WebRTC. For a multiple browser conference, a centralized
media server/mixer/selector can be used; this requires only a single Peer
Connection to be established between each browser and the media server.
This is shown in Figure 1.11. This is sometimes referred to as a “centrally
mixed” conferencing architecture. Each browser sends media to the server,
which distributes it to the other browsers, with or without mixing. From
the perspective of browser M, media streams from browser L and T are
received over a single Peer Connection from the server. As new browsers
join the session, no new Peer Connections involving browser M need to be
established. Instead, new media streams are received over the existing Peer
Connection between browser M and the media server.

The full-mesh architecture of Figure 1.10 has the advantages of no
media server infrastructure, and lowest media latency and highest quality.
However, this architecture may not be suitable for a large multi-party
conference because the bandwidth required at each browser grows with
each new participant. The centralized architecture of Figure 1.11 has the
advantage of being able to scale to very large sessions while also minimizing
the amount of processing needed by each browser when a new participant
joins the session, although it is perhaps inefficient when only one or a small
number of browsers are involved, such as in peer-to-peer gaming.

11

Figure 1.11 Single Peer Connection with Media Server

1.4 WebRTC Standards

The WebRTC standards are currently under joint development by the
World Wide Web Consortium (W3C) [W3C] and the Internet Engineering
Task Force (IETF) [IETF]. W3C is working on defining the APIs needed
for JavaScript web applications to interact with the browser RTC function.
These APIs, such as the Peer Connection API, are described in Chapter 5.
The IETF is developing the protocols used by the browser RTC function
to talk to another browser or Internet Communications endpoint. These
protocols, for example, extensions to the Real-time Transport Protocol, are
described in Chapter 8.

There are pre-standard implementations of many of the components of
WebRTC in some browsers today. See Chapter 8 for details.

Note that there is an important distinction between ‘pre-standard’
and ‘proprietary’ implementations. Pre-standard implementations
emerge during the development stage of standards, and are critical to
gain experience and information before standards are finalized and
locked down. Pre-standard implementations often follow an early or
draft version of the standards, or partially implement standards as a
‘proof of concept’. Once the standard has been finalized, these pre-
standard implementations must move towards the standards, or else
they risk becoming a proprietary implementation. Proprietary
implementations fragment the user and development base, which in
an area such as communications can greatly reduce the value of the
services.

The W3C work is centered around the WEBRTC Working Group and
the IETF work is centered around the RTCWEB (Real-Time

WebRTC: APIs and RTCWEB Protocols of the Real-Time Web

12

Communications Web) Working Group. The two groups are independent,
but closely coordinate together and have many common participants,
including the authors.

The projected time frame for publication of the first version of
standards in the IETF and W3C is in 2014. However, these dates are most
likely overly optimistic. (When do engineers ever realistically estimate level
of effort?) Standards-compliant WebRTC browsers are expected to be
generally available sometime in late 2014.

1.5 What is New in WebRTC

There are many new and exciting capabilities in WebRTC that are not
available even in today’s VoIP and video conferencing systems. Some of
these features are listed in Table 1.1. The rest of this book will explain how
these are achieved using the WebRTC APIs and protocols.

1.6 Important Terminology Notes

In this book, when we refer to the entire effort to add standardized
communication capabilities into browsers, we shall use WebRTC. When
we are referring to the W3C Working Group, we will use WEBRTC. When
we are referring to the IETF Working Group, we will use RTCWEB. Note
that WebRTC is also used to describe the Google/Mozilla open source
media engine [WEBRTC.ORG], which is an implementation of WebRTC.

In addition, because the main W3C specification is titled “The WebRTC
Specification” [WEBRTC 1.0], we use its full title to reference this
particular W3C document, which is a key part of WebRTC, but by no
means the entire specification.

Also note that the World Wide Consortium refers to itself as “W3C”
and not “the W3C”. We have adopted this convention throughout this
book.

13

!"#$%&"' (&)*+,",'-.+/0' 123'456)&$#/$'

"#$%&'()!$*+!+,-./,!
.*+,0,*+,*/,!

1%$*+$(+!2"34!&(')!5678!
4%$*+$(+!0('%'/'#4!&(')!39:;!

<,-,#'0,(4!/$*!=(.%,!
5,>?:7!@:ABC!/'+,!%D$%!
=.##!(E*!$/('44!+.&&,(,*%!F18!
>('=4,(48!$*+!+,-./,48!
+,4G%'0!$*+!)'>.#,H!

1,/E(,!-'./,!$*+!
-.+,'!

1,/E(,!?:"!"('%'/'#!I1?:"J!
,*/(K0%.'*!$*+!
$E%D,*%./$%.'*!

L('=4,(4!$(,!E4,+!.*!
+.&&,(,*%!,*-.('*),*%4!$*+!
'-,(!E*4,/E(,+!5.;.!
,%='(G4H!!9/(K0%.'*!),$*4!
%D$%!'%D,(4!/$*M%!#.4%,*!.*!'(!
(,/'(+!-'./,!'(!-.+,'H!

2+-$*/,+!-'./,!$*+!
-.+,'!NE$#.%K!

F0E4!$E+.'!/'+,/8!O"P!-.+,'!
/'+,/8!$*+!'%D,(4!

@$-.*Q!>E.#%R.*!4%$*+$(+!
/'+,/4!,*4E(,4!
.*%,('0,($>.#.%K!$*+!$-'.+4!
/'+,/!+'=*#'$+48!$!=$K!
)$#./.'E4!4.%,4!.*4%$##!
40K=$(,!$*+!-.(E4,4H!S,=!
/'+,/4!/$*!$+$0%!=D,*!
/'*Q,4%.'*!.4!+,%,/%,+H!

?,#.$>#,!4,44.'*!
,4%$>#.4D),*%!

@'#,!0E*/D.*Q!%D('EQD!
S,%='(G!2++(,44!:($*4#$%.'*!
IS2:J!

<.(,/%!),+.$!>,%=,,*!
>('=4,(4!.4!*'%./,$>#K!)'(,!
(,#.$>#,!$*+!>,%%,(!NE$#.%K!
%D$*!4,(-,(R(,#$K,+!),+.$H!!
2#4'8!%D,!#'$+!'*!4,(-,(4!.4!
(,+E/,+H!

AE#%.0#,!),+.$!
4%(,$)4!$*+!),+.$!
%K0,4!4,*%!'-,(!$!
4.*Q#,!%($*40'(%!

?,$#R%.),!:($*40'(%!"('%'/'#!
I?:"J!$*+!1,44.'*!<,4/(.0%.'*!
"('%'/'#!I1<"J!,T%,*4.'*4!

94%$>#.4D.*Q!+.(,/%!),+.$!
E4.*Q!D'#,!0E*/D.*Q!/$*!%$G,!
%.),H!!1,*+.*Q!$##!),+.$!'-,(!
$!4.*Q#,!4,44.'*!.4!$#4'!)'(,!
,&&./.,*%!$*+!(,#.$>#,H!

2+$0%.-,!%'!
,%='(G!/'+.%.'*4!

AE#%.0#,T,+!?:"!7'*%('#!
"('%'/'#!I?:7"J8!1,/E(,!2E+.'!
O.+,'!"('&.#,!=.%D!;,,+>$/G!
I12O";J!!

;,,+>$/G!'*!*,%='(G!
/'*+.%.'*4!.4!,44,*%.$#!&'(!
-.+,'8!$*+!=.##!>,!,40,/.$##K!
.)0'(%$*%!&'(!%D,!D.QD!
+,&.*.%.'*8!D.QD!>$*+=.+%D!
4,44.'*4!.*!5,>?:7H!!

1E00'(%!&'(!)E#%.0#,!
),+.$!%K0,4!$*+!
)E#%.0#,!4'E(/,4!'&!
),+.$!

2"34!$*+!4.Q*$#.*Q!%'!
*,Q'%.$%,!4.U,V&'()$%!'&!,$/D!
4'E(/,!.*+.-.+E$##K!

:D,!$>.#.%K!%'!*,Q'%.$%,!,$/D!
.*+.-.+E$##K!(,4E#%4!.*!)'4%!
,&&./.,*%!E4,!'&!>$*+=.+%D!
$*+!'%D,(!(,4'E(/,4H!

3*%,('0,($>.#.%K!
=.%D!O'3"!$*+!-.+,'!
/'))E*./$%.'*!
4K4%,)4!E4.*Q!13"8!
W.*Q#,8!$*+!"1:S!

1%$*+$(+!1,/E(,!?:"!I1?:"J!
),+.$8!1%$*+$(+!1<"!$*+!
,T%,*4.'*4!

9T.4%.*Q!O'3"!$*+!-.+,'!
4K4%,)4!/$*!='(G!=.%D!*,=!
5,>?:7!4K4%,)4!E4.*Q!
4%$*+$(+!0('%'/'#4H!

Table 1.1 New Features of WebRTC

WebRTC: APIs and RTCWEB Protocols of the Real-Time Web

14

1.7 References

[HTML5] http://www.w3.org/TR/html5

[SKYPE] http://www.skype.com

[CSS] http://www.w3.org/Style/CSS

[draft-ietf-rtcweb-overview] http://tools.ietf.org/html/draft-ietf-rtcweb-
overview

[RFC3261] http://tools.ietf.org/html/rfc3261

[XEP-0166] http://xmpp.org/extensions/xep-0166.html

[RFC6120] http://tools.ietf.org/html/rfc6120

[W3C] http://www.w3c.org

[IETF] http://www.ietf.org

[WEBRTC.ORG] http://www.webrtc.org

[WEBRTC 1.0] http://www.w3.org/TR/webrtc

